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Abstract — The general mode [ crack problem for orthotropic plates under bending and membrane
loading is considered. First the bending problem for a series of coplanar through cracks is formulated
and the effect of material orthotropy on the stress intensity factors is studied. By varying the six
independent material constaats one at a time it is shown that, with the exception of Poisson’s ratio,
all other material constants may have a considerable effect on the stress intensity factors. The surfuce
crack problem is then formulated by using the line spring model with a transverse shear theory of
plate bending. Examples are given for composite laminates and crystalline plates containing one or
two semiclliptic surface cracks and subjected to membrane loading or bending. Here, too, by
comparing the results with the isotropic plate solution, it is shown that for severely orthotropic
muaderials such as composite laminates the effect of material orthotropy on the stress tntensity factors
could be rather significant.

. INTRODUCTION

In studying the mechanical failure of structural components that may locally be represented
by a “plate”™ or a “shell™, very often onc has to consider the subcritical cruck growth
initinting from surface imperfections as a possible mode of failure. The underlying three-
dimensional clasticity problem appears to be analytically intractable. Thus, the existing
solutions of surface crack problems are based largely on the finite clement method (for
typical studics see, ¢.g. Newman and Raju (1979), Raju and Newman (1982), O’Donoghue
et al. (1986) and Nishioka and Atluri (1982)). Highly effective solutions, however, have
also been obtained by using the relatively simple method of a line spring model in con-
junction with i plate or a shell theory (Rice and Levy, 1972 Delale and Erdogan, 1982).

In this paper the main interest is in the effect of material orthotropy on the stress
intensity fuctors. In components such as composite laminates, rolled plates and other
oriented materials in which the elastic properties in thickness direction may be different
from the in-planc values, the assumption of material isotropy may give misleading results.
It may be observed that these materials, particularly composites, are multiphase materials
and, consequently, in analyzing the processes involving flaws that are of the order of
microstructural dimensions, they would have to be treated as non-homogeneous elastic
continua. On the other hand if the component contains macroscopic flaws having sizes
much greater than the local microstructural dimensions and if the material is sufficiently
ordered, it may be treated as a homogencous anisotropic or orthotropic continuum. In this
study it is assumed that the plate is orthotropic and contains coplanar surface cracks that
may be longer than the plate thickness. The problem is solved by using the line spring model
along with Recissner’s plate theory (Reissner, 1945; Medwakowski, 1958). The plate is
assumed to be under symmetric bending or membrane loading and only the mode I problem
is considered.

2. EQUATIONS OF ORTHOTROPIC PLATES
Following Reissner, if we assume that the stress components o,,, 0,; and o, are linear
in the thickness coordinate x, and
031 X2 h2) =0, oy(xxa —R2) =¢q, o5(x, X FA2) =0 (i=12 (D)
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from the three-dimensional equilibrium equations it may be shown that (Schifer, 1952:
Timoshenko and Woinowsky-Krieger, 1959)

12M,,x, 12M 2 x; 12M.x;
gy = h3 . 0'33=—“"';"IT—“, Ty = — h3
3 4-‘3 3, 4x3
()’H_T lw-kz . 623—-?— I_h2
3 (2x; 8x3 2)
=3\7% w3 2a-f
T33 a ( A T + 3 1-1)

where M;; and V; (i = 1.2) are, respectively, the moment and transverse shear resultants
and A the thickness. Also, from the equilibrium of the plate element we have

oM, AR
Yoy=0 (=12, it l4qg=0. Jae
L om0 = et e

The following average rotations and displacement are now introduced by using the
balance of work done by the resultant forees through these average values and by the
corresponding stresses o, through the actual displacements o, (1. = 1,2, 3) (Schiifer, 1952):

» -

/! () Fhi2 l
(A It ax,
W j o A2
pe= Sy
3 =g iy ~-odxy
h J ki 2
fh2 D
(-t (da-¢)
W= b= 5 | dxy. a-c
2h J o2 h: '
Let the stress—strain relations of the material be
A 3
ou,
_ _ , .4 oa
&y = PO Z '5;,(7”' (l = i,.‘.,.})
ax, 2
] e
(515 Gy
2y = 4 T+ = S0
[EAN [FAW)
b 5
Quy,  Cuy,
Ay =0+ = 85500,
¢ X3 ¢Xy
R 2
fuy Cus
= 57—+ 5= = Sea012e (5a-6)
12 T Ty
X2 Xy

Note that for orthotropic materials S, = S,,. By integrating in x, from eqns (2). (4) and
(5) it follows that
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Technically eqns (3) and (6) give the complete formulation of the orthotropic plate under
bending. By substituting from eqns (6) into eqns (3) one obtains three second-order equa-
tions in . B, and w that are equivalent to a sixth-order system. Hence three conditions
need to be prescribed on the plate boundaries for a unique solution.

Equations (3) and (6) may also be reduced to the following system in the unknown
functions w, ¥, and V,:

Vii+ V=0
Vit d Vi doViss—Aaw i —Agw 15 =0
V:‘{“A;V:‘H +A,,V3.3:-«A7n'.nz—-/!,,u’_:3: == {} (721“(:)

where it is assumed that ¢ = 0, the standard notation for partial differentiation is used and
the constants A, are

h* Sas W’ Sss
/’[ - IOA(S»\SS§+S;?S44—AS‘;‘;) 112-" - lO:S;;:
o h [ 2A h
Ay=— 538 di=dy= - 5n (5;, ‘*Sn)‘ Asg = — ']*O':S:;Su
I S n
Ay = — lOA(S“S“—*’SPS“_A:STE:) Ay = “’]*j"A“Sll
A=‘~SHS::'“SuS:x' (8)
By introducing the stress function Fsuch that (Medwakowski, 1958)
w= o+ F o+ A F
Vi=AF 2+ AF a0
Vy= = A F i —ASF (9a-c)
eqns (7) may be shown to be identically satisfied provided
o*F *F HF o' F oF o¢F A F
Blm‘*‘B:PY;e 3+B}a4+846 Bsa a' B@a 64+B77f’—0 (10)
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where

B|= —AJ. B:= _2A_‘. B3= —‘48v B4=—A3f’§. B7= ’44:/‘{,‘
Bs = —Ad5—A;4,— 4, A,. Bo= —A A, — A A, —4,4,. (tn

Similarly, with the usual generalized plane stress assumption
0 =03=0,;=0 (12)

in terms of the Airy stress function ¢ the membrane problem may be formulated as

-4 ~d ~4
e ¢ 2 C
— +2C s=3+C:575=0 13
oxy ' oxi dx3 S éxd (1)
&t 3 fat
g == 5 G2 = 7775, 1= — T ‘4
T o A & 2 x, €x, (1)
where
Stz See Sa)’
Ci=o 4+ 000 Co={—] . t5
TS, 28, ) S: (1)

3 THE THROUGH CRACK PROBLEM -—~BENDING

Consider now the bending problem for an infinite orthotropic plate containing a series
of through cracks on the x, = 0 plane (Fig. 1). It is assumed that x, = 0 is a planc of
symmetry and through a proper superposition the problem is reduced to a perturbation
problem in which self-equilibrating stress resultants acting on the crack surfaces are the
only non-zero external loads. By using the standard notation

Ny=N, ox,=y, oxyv=z, Mg=M ..., Fy=Vo..., Bi=fL... (16)

and by expressing the solution of eqn (10) in terms of the following Fouricer integral

L(x3y) x3
1 m}é_

A
v A ——
-

Fig. 1. The geometry of through and surface cracks in a plate.
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Flx.y) = "2—‘% ch r(x,2) e da, r{x.2) = R(z) e™ (7
the characteristic equation for m is found to be
Bym®+ (B, ~a’B)m* —(2°By~a*Bg)m* + (2* By —a®B,) = 0. (18)
After solving eqn (18) the roots may be ordered such that
Re(m) <0 (j=L2L3). my;=-—m, 18]

Observing the assumed symmetry, it is sufficient to consider x > 0 half of the plate only.
Thus the solution satisfying the regularity condition at v = o would be

3
(5. = § R € (20)

Note that once the unknown functions R, (j = 1,2,3) are determined, the quantities A,
Foand 8, (i.j = 1, 2) may be obtained from eqns (19), (17}, (9) and (6).

The unknown functions R,, R, and R, are determined from the following boundary
conditions :

M0 =0, V{03»=0 (—o<y<wm) (2la. by

M 0.9y =p(y), yel.
p0.y) =0, yel (224, b)

where py i a known function, L, refers to the system of eracks on the x = 0 plane and
(L.+ L) = {—,20).

From egns (6}, (9). (17} and (19) the quantitics that appear in boundary conditions
(21 and (22} arc obtained as

M. 7) = f Z 0, (OR,(2) €~ da

PA 2n

*

] } ‘
Mo (xp) =5~ S 0,0 R (a) €™ da

Wil Jo

i
Vx,y) = 52 Z (Asa*m,— Ayanl )R (2) €™~ da

o L

o]

3
~~~~~~ {f (x.3) = . Y 05,(m)R (@) e dx (x> 0) (23a-d)

u‘“’

where A is defined by eqn (8) and the functions 0,,(2) (i = 1,2, 3) are given in the Appendix.
Defining now a new unknown by

&
g{y) = 5“;&(0,}'} (—ow<y<w) (24)

the functions R, (j = 1.2, 3) may be obtained in terms of ¢ from egns (21) and (23b)-(23d).
The expressions of R, thus found are also given in the Appendix.
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Condition (22a) which is yet to be satisfied determines the unknown function g. Thus.
by substituting from the Appendix and eqn (23a) into egn (22a) we obtain

lim)f g1 d[J Ko e dr=p,(1). rel, (25)
X+ ( L,

e

where K is a known function. The singular behavior of the kernel which determines the
asymptotic nature of g near the ends of L, is obtained by examining K for x — F x. Let
K™ (x, 2) be the asymptotic form of K for x — F x. The kernel in eqn (25) may then be
expressed as

j K(x.2) e™'™" dx = J K™ (x,2) e dx+f [K(x.2) = K™ (x.2)] €™ " da.

x

(26)

After some lengthy manipulations it may be shown that for x —» 0+ the first term on the
right-hand side of eqn (26) gives a simple Cauchy kernel and the second is bounded. The
integral equation, eqn (25), may thus be expressed as

1
i J |:1 p +k(_\',1)]‘z/(l) dt =p(¥). rvel, (27
re LE—.
where g, is a material constant and the Fredholm kernel is obtained from
k(v.h) = J [K(0,2) = K “(0,2)] ¢ " da. o)

Note that if L, consists of the line segments L, (1= 1, ..., n) on the y-axis, from eqn (24) it
follows that cqn (25) must be solved under the following single-valuedness conditions :

J grydey =0 (i=1,..., "n. 29)
1'1

For coplanar through cracks along L, = Z L,. L, = (u,, b). the simplest way of solving
i
eqn (27) would be to let

g =90 p()=puy), g <y<b (i=1l.., n) (30)

rewrite eqns (27) and (29) as

n h, l
ey |:1 +h(r.0 g,y dt=p(3). g <y<bh (i=1..... n) (31
p Wy -
h,
J g dyr=0 (=1..., n) (32)
and treat eqn (29) as a system of singular integral equations in g,....,g,. The intervals

(a,.h,) may then be separately normalized to (— 1. 1) and the system may be solved by using
a standard Gauss-Chebyshev integration technique (Erdogan, 1978). Referring to, e.g.
Muskhelishvili (1953). it is known that the solution of eqn (31) is of the form
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() = G.(»)
IV =6 =G—a)

a<y<b (i=1,...,n (33)

where the functions G, are bounded in the closed interval [a,, 5] and G,(a) # 0, G.(b,) # 0
(i=1.....n).

In this study the primary interest is in the stress intensity factors at the crack ends g;
and b, (i = 1,...,n). The standard definition of the mode [ stress intensity factor at, e.g.
y=bis

kiby = lim (Q2(y—5))0.(0.1.2). (34

From eqns (22) and the derivation of the integral equation, eqn (27), we observe that the
left-hand side of eqn (27) or (31) corresponds to M, (0, y) for y outside as well as inside
the cracks. Thus. from the asymptotic analysis of the solution of the singular integral
equations, eqn (31), near the end points g, and b; it may be shown that

Jim JR=bIM(0.5) = = lim Qb= y)mingi(y)

Jim | JQa— M 0.3) = lim JQ(y—a)muigy) = L....n).

(35a.b)
From eqns (2a) and (33)-(35) it then follows that
12z .
kih.3) = =mpy o lim Qb - 1))9.()
12z G,(b)
= Ty e
B Jbi—a)
12= G,(a) )
ki(a,2) =np, —~ ——————— (i=1,...,n). 36a,b
l( ) Hy h_‘ \/((h,—-a,)/2) ( ( )
4. THE THROUGH CRACK PROBLEM—MEMBRANE LOADING
For the in-plane loading problem expressing the solution of eqn (13) by
| )
P(x,y) = 5 f Ylx.2) e ™ da, ¢ = P(a) ™ 37
the characteristic equation is found to be

n 3 n 2
(;) +2c,(;> +Ci=0 (38)

where €, and C, are given by eqns (15). Noting that since generally S,; < 0, the roots of
eqn (38) may be rcal or complex. Thus, the solution of eqns (37) satisfying the regularity
conditions at x = oo may be expressed as

(¥

Y(ea) =Y P,a) e~ )
1

if the roots (n/x) = Fn, (i = 1,2) are real (defined as “‘material type 1"), and
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Y{x.2) = [P (2) cos gxx+ P,(x) sin g xx] g ™ (40)
it the roots (n 2} = F(q, Fig.) are complex (defined as “material type 277) where ny. n.. ¢,

and g, are positive constants. The unknown functions P, and P, are determined from the
following boundary conditions :

Nt}'(ov}") = 0, -— 0 < ¥ < X (4})
N (0.y) = po(¥). yel .
u (0.3) =0, yel. (42a.b)
Defining
a .
E’“v u 0. ) = f(1), —oOo<p<x (43)

and following a procedure similar to that described in the previous section, the integral
equation to determine f(v) is found to be

! ”n
i tfm(% de=p,(»). rel. L. =YL, (4
[ Bt ]
where
h i 45
He= n S +,) (43)
for material type 1, and
h !
fty = {40}

T 2S¢l +qd)

for material type 2. Again, from cyns (42b) and (43) it follows that f/ must satisfy the
following single valuedness conditions :

jf(z) dt=0 (i=12,....n. (47
r,
Also, if we let
Fy .
S = L0) = o W a<r<b =l...n) (48)

(Bl

and observe that po(v) = he, (0, y) the stress intensity fuctors at the crack tips #, and g, are
found to be (sce eqn (34))

P . O
by = =7, Jh,~a)/?)
kay =" B ), (494. b)

5. THE SURFACE CRACK PROBLEM

In the case of a plate containing a series of coplanar through cracks the bending and
membrane problems are uncoupled and the respective solutions are given in the previous
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e

()

Fig. 2. The edge-cracked strip under plane strain conditions used in the development of the line
spring model.

sections, In plates with surface cracks, since £ = 0 is no longer a plane of symmetry (as in
membrane loading) or antisymmetry (as in bending), clearly the problem cannot be
uncoupled. In a plate with surface cracks the net ligament under the crack would gencrally
have a constraining effect on the opening of the crack surfaces. In this case, representing
the net ligament stress o (0, . 2) {0, < y < b, —h/2 < 2 < hj2~ L. Fig. 2) by a membrance
loud ¥ and a bending moment M, and the crack surface displacement due to ¥ and M as
an opening (@t = =0} J and a rotation 8, the three-dimensional crack problem may be
reduced to a two-dimensional coupled bending/membrane plate problem. Furthermore, by
assuming that the relationship between (N, M) and (9, 0) may be found from the plane
strain solution of an edge-cracked strip, the pair of functions (3,0) or (N, M) can be
determined from the corresponding mixed boundary value problem for a plate having
through cracks in which ¥ and M are treated as unknown crack surface loads.

We now observe that in the absence of any cracks if the applied loads at the x =0
plane are given by

M. (0.3) = My(x), M, 0,5)=0. V. (0,)=0 (50

Ne0.0) = No(3), N,(0.) =0 5hH

the surface crack problem may be formulated by using the through crack solution in which
the (unknown) cruck surface tractions include M(y) and N(y) representing the effect of net
ligament stress o, Thus, the integral equations, eqns (27) and (44), may be modificd as
follows :

I
Iy J: [;‘:; +k(y, t)]!](l) dt = —M,()+ M), yel (52)
pz J; ;l“(.“_% dt = —No(}’)-f-N()')' ,ve L. (53)

In order to solve these equations first the relationship between the pair of functions (M, V)
and (8. J) must be established, where

BAS 23:2-7
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 do
05 =283, g =5

| do
o(y) = 2u (0.v), f(¥) = 3 g(: (54a—d)

This relationship may be found by expressing the energy available for fracture in two
different ways: as the strain energy release rate in terms of the stress intensity factor and
as the product of the load-load point displacement at the x, = 0 plane (Rice and Levy,
1972). In an orthotropic plate with an edge crack subjected to a membrane load N and a
bending moment Af (Fig. 2(a)). if k, is the stress intensity factor obtained from the plane
strain solution then. from the incremental crack closure, the rate of energy available for
fracture may be obtained as

P

G = (U=V)= "k 55
—(-TL( - —ﬁ;: i (55)

where U is the work done by the applied loads. V' the strain energy. and g, a material
constant given by the elasticity matrix §;, as follows (Sth and Liebowitz, 1968) :

V2 ha\'? 2 4h )
N i UV o B T (56)
Vb)) N\ by
bii=(SnS—=8:1)/8. by =(S11S:-512)/8
bia =S b = (5135 = 512500/, (57

For the edge crack shown in Fig. 2(a) the stress intensity factor may be expressed as
ki(s) = Jhlog(s) +augn(®)]. () = L(»)/h (58)
o, = Nih, a, =6M/h: (59)
where the “shape functions™ g, and g, are obtained from the results given in Kaya and

Erdogan (1980). Referring to Fig. 2(b). the energy available for fracture may also be written
as (Erdogan, 1986)

dU = NdI+M dO, dV = YN ddo+ M db) (60)
Y = ("'(U Vy = ! (N C(S' + M F‘U) 61
= CL T2 oL L) 6h)

From eqns (53), (58) and (61) it may be shown that

h 2h
0= (20 + A7)
125
. 2h
o= ,l (%, + %, 0,) (62a,b)
3

where the compliance coeflicients «,; are given by

2/ 1l
y -~—'f 9.9,dL (ij=b.0). (63)
)

3 ge

R
i

Referring now to eqns (54) we have
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0(y) =2 f gy de, d(y) = 2J‘ f(de, yel. (64a,b)

Thus. by substituting from eqns (59). (62) and (64) into eqns (52) and (53) we obtain

n f'b, 1 hl v h v
He Y [—— +k(y.t) |g,(6) dt—p, w7 | g.(0) de+ g | Sfi(p) dt

e L=y

= —-My(y). a<y<b

n [ h ¥ ¥
MY [At—)dt—m[gmf g dt+;'nf £ dt:]

et du, Y

= —Nog(¥). a<y<b (=1,....n) (65a.b)

where y; (i. / = b. t) are functions of y and are given by

. e . Ay . Ain v Apb
4. B R A R I £ {- B T £ { S
Au An An A()
Ao = Apny = ApyEep- (66)

The shape functions g, and g, are tabulated in Kaya and Erdogan (1980). To simplify
the manipulations they are represented here in the following analytical form :

.
g(8) = /s Y s s=Llh
0
X
NOEINE Z dis™, s=L/h (67a.b)
(1]

FFor malterials 1--3 the stress intensity factors obtained from the plane strain solution
of a strip with an edge crack under a membrane load N or a bending moment M are given
in Table 3 (Fig. 2(a)). Table 4 shows the corresponding coctlicients ¢, and d, giving the
shape functions g, and ¢, defined by eqns (58) and (67). After solving the integral equations,
eqns (65), for ¢ and /, the stress intensity factor for the ith crack may be obtained by
substituting from

g di+ /;: ‘/m(,v)J Sdt (a,<y<b)

)

G,(1) = llg‘ Yol ) J‘

3

a((_v)=4‘6-‘~,..,(y)f gd1+l~/lf','"(_r) f fdt (@, <y<b) (i=1,....n (684, b)

4,

into cqns (58).

6. RESULTS

The clastic propertics of the materials considered in the examples arc given in Table
1. Material 1 is basically isotropic and is included for the purposc of comparing the results
with previous studics. Materials 2 and 3 arc graphite-epoxy composite laminates. Except
for the 90 rotation in the axes of orthotropy, these two materials are identical. Some limited
results arc also obtained for a crystalline material, TOPAZ (SiO.Al,(FOH),) (Hearmon,
1961). Table 2 shows the properties of TOPAZ designated as materials 4 and 5. Again, the
difference between these two materials is a 90° rotation in axes of orthotropy. In all cases
the crack is located in the x, = x = 0 plane.
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Tabie 1. Elastic constants of materials [-3

Matenial 1 Muterial 2 Matenal 3

£ psi 2247 < 100 5.86 < 10° 22100
N GPa 15,477 40.405 153.069

£ psi 226 10 222x 100 5.86 < 10"
' GPa [5.583 [53.069 40.405
E psi 226 < 107 RS 33x 107
: GPa 15.583 22754 22,754

G psi 0.866 < 10° 425 < 10" 425 x 10"
v GPa 5971 29.304 29.304

G psi 0.866 < 10° 0.592 x 10" 0.225x {0°
v GPa 5971 $.082 1.551

G psi 0.866 < 10 0.255 < 10" 0.592 x 10
GPa 3971 1.551 4.082
v, 0.3 0.484 1.834
V.- 0.3 0.195 0.26t
V.. 0.3 0.261 0.195

Table 2. Elastic constants of TOPAZ, materials 4 and 5 (in units of
10 "em dyn ! (Hearmon, 1961))

S =443 §..=3583 Soo= L84
Material 4 Sp= =138 8, = 086 8., = ~0.66
Sy =925 S~ 7.82 Son = 7.63
Sy o= 383 Soo= 443 S o= 384
Material 5 Sy« L3R Sy 0,60 S o= =~0.86
S, 7152 N =925 Sen = 1.63

Table 3. Stress intensity factors in i strip containing an edge crick under membrane loading V and bending
moment M (a, = Nih, a, = 6M0* (Fig. 2(2))

Muterial 1 Muaterial 2 Material 3

Il k, k., k, ky k, ky

h a L o, L oL a, L a1l a1l
0.001 1.122 1.120 1.042 1.041 LOS0 [.049
0.1 1.189 1.047 1.129 0.992 113 .996
02 1.367 1.085 1.31% 1.013 1.321 1.0t6
0.3 1.660 1.124 1.607 1.083 1.611 1.0%6
0.4 2011 1.261 2.042 1.211 2048 1.215
0.5 2825 [ 498 2720 1.430) 2730 1.436
0.6 4.033 1.9L5 3.860 1.814 3.876 1.823
0.7 6.355 2728 6.038 2.563 6.068 2,577
X 11,955 4691 11.277 4.372 11.350 4.402

Table 4. The coctlicients ¢, and d, for the shape functions g, and g, (¢qn (67))

Material | Material 2 Material 3

k Cy A Ch d, i A

0 1.122 1.120 1.047 1.043 1.055 1.051
{ 6.520 — 1.887 7.639 —-1.610 7.461 —-1.664
2 - 12388 185.014 .—27.969 17.276 —~ 25426 17.517
3 89.055 ~R87.385 175.360 —84.989 160,659 —85.711
4 — 18%8.608 241.912 —~339.451 232.556 —396.808 234.182
5 207.387 ~-319.940 557.540 — 304,196 498.577 —306.252
6 —32.082 168.011 ~222.R0 158.307 -191.359 159.403
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Table 5. The effect of Poisson’s ratio and crack length on the

normalized stress intensity factor k,/0,./a in an isotropic plate

containing a through crack and subjected to bending M [, = M,:
6, = 6Myii° (Fig. L, eqn {71}

v

ah 0.5 0.3 0

0.01 0.9995 0.9993 0.9990

0.05 0.9900 0.9885 0.9851

0.1 09717 0.9676 0.9583

0.25 09111 0.8992 0.8735

0.5 0.8383 0.8193 0.7804

i 0.7707 0.7475 0.7020

2 0.7247 0.6997 0.6518

4 0.6960 0.6701 0.6211

6 0.6847 0.6586 0.6091

10 0.6746 0.6481 0.5984

100 0.6575 0.6306 0.5803
200 0.6292
1000 0.6276

By using the solution given in this paper, first the results given by Joseph and Erdogan
{1987} for an isotropic plate with a through crack under bending are reproduced. These
results are given in Table § for reference. The stress intensity factors shown in Table § are
obtained from eqns (32) and (36) for a single crack of length 2¢ and for the uniform bending
moment (see eygn (21) and Fig. 1)

M O=p0)=~-M, -—-ec<y<a (69)
In terms of the surface stress given by

_ M,

=

(70)

for a single crack the stress intensity factor defined by cqn (36) may be normalized and
written as follows:

k(a,z : ki(a)
) = k@) 7
ooJa  M2ayJa “h
The notation
ky(h B2y =k (b)), ki(u,W2)=k(a) (i=1,...,n (72)

is used in all through crack results given in this paper.

The effect of material orthotropy on the stress intensity fuctor in a plate containing a
single through cruck under uniform bending is shown in Fig. 3 where material 1 is isotropic
and the properties of materials 2 and 3 are given in Table 1. The figure shows that the
deviation from isotropic results can be considerable. It should be emphasized that in the
particular plate theory used full matcrial orthotropy had to be considered. Hence, from the
results given in Section 2 it may be scen that with S, = S, there arc eight independent
material constants in bendingt and four in membrance formulation of the plate. Further-
morc. by normalizing, the number of independent material parameters can always be
reduced by one. From eqns (13)-(15) it may also be observed that for ¢ = 0 the bending
formulation is not dependent on S,y and S,, (or v, and v,,), and consequently in the
through crack case there are only six independent constants. However, in formulating the

1§, docs not enter into the formulation.
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1.0

0.9 Mat, 2

0.8
k)

:rbﬁ
0.7

0.6

0.5 i 1 1 i 1 I 1 |
0 0.5 1.0 0.5 0

h/a a/h

Fig. 3. The effect of the plate thickness en the normalized stress intensity factor tn a plate containing
a single through crack under bending moment M7, = M, a, = 6M 7B (Fig. 1, Table 1)

part-through crack problem, in addition to membrane loading and bending of the plate,
one has to consider the plane strain crack problem for the orthotropic medium in the vz
planc. As a result, the formulation of the surfuce crack problem involves all nine material
constants.

In an attempt to determine the effect of the individual muterial constants, the through
crack beading stress intensity fuctors for a/h = [ were caleulated for a series of fictitious
orthotropic plates where in cach case only one or two material constants are varied. The
results are shown in Fig. 4. The stress intensity fuctors given in Fig, 4 are calculated for
vy, = 0.5, In these problems the effect of Poisson’s ratio s not very significant and is quite
similar to that observed for isotropic plates (Table 5). A sample result showing the effect
of (7, and v, is also given in Table 6. With the exeeption of the particular material constant
that wis vatried, the plate is assumed to be “isotropie™. For example in Table 6 the material

R

Gi3_Gn3
G2 G2
G23/G12
G13/Gy2

0.8

Ef/Ez
E2/Ey
G12/Gy3

0.6

041111[14111 e bt

0 0.5 1.0 0.5 0
R 1/R

Fig. 4. The effect of individual material constants on the normalized stress intensity factor in a plate
containing a single through crack under bending moment M [ = Ao o, = 6MJR (ahy = L.
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Table 6. The effect of the transverse shear modulus
G,, on the normalized stress intensity factor
k,/oy\/ain an orthotropic plate with a through crack
under bending M = M,, 0, = 6M/h*.alh = 1 (Fig.

1. eqn (71))
via
Gy
G 0.5 0
0.001 0.985 0.978
0.01 0.930 0.899
0.1 0.826 0.765
0.2 0.801 0.736
0.5 0.780 0.713
l 0.771 0.702
2 0.766 0.697
5 0.763 0.694
10 0.762 0.692
100 0.7605 0.6911
1000 0.7604 0.6910
10,000 0.7604 0.6910

Table 7. The effect of the interaction of two coplanar through cracks on the normalized stress intensity factors in
an isotropic plate under bending M, = M, 0, = 6M k. v =03, a = (b, —a))/2. c = (h;—a)/2. d = a;-b,
(Fig. l.eqn (71))

¢ 4 oy 0.25 0.5 { 2 ©
a [
( 0.8799 0.8551 0.8313 0.8045 0.7798 0.7475
k() 0.5 0.8071 0.7938 0.7821 0.7698 0.7593 0.7475
" 0.25 0.7711 0.7647 0.7598 0.7551 0.7513 0.7475
0.1 0.7532 0.7512 0.7500 0.7490 0.7482 0.7475
[ 1.294 1.076 0.9599 0.8697 0.8049 0.7475
kith) o 1.063 0.9143 0.8458 0.7995 0.7698 0.7475
anJa 0.25 0.9161 0.8220 0.7863 0.7663 0.7550 0.7475
0.1 0.8088 0.7678 0.7563 0.7514 0.7489 0.7475
1 [.294 1.076 0.9599 0.8697 0.8049 0.7475
ky(ay) 0.5 Loz 0.8405 0.7498 0.6786 0.6261 0.5794
(,'h\‘/',, 0.25 0.7990 0.6595 0.5867 0.5297 0.4872 0.4496
0.1 0.5647 0.4577 0.4037 0.3627 0.3325 0.3060
| 0.8799 0.8551 0.8313 0.8045 0.7798 0.7475
ky(by) 0.3 0.7395 0.707! 0.6771 0.6434 0.6132 0.5794
.z 0.25 0.6275 0.5867 0.5507 0.5135 0.4816 0.4496
0.1 0.4817 0.4293 0.3917 0.3577 0.3308 0.3060

constantsare assumedtobe £, = E,,, G,y = G,y = E,,/2(1 +v,,) and G, is varied relative
to the remaining constants. As the varying material constant approaches infinity, there does
not seem to be any difficulty in calculating the limiting value of the stress intensity factor
(sce Table 6 and Fig. 4). This is only partly the case for R — 0. One of the interesting results
observed here was that as G ;. G5 or both approach zero, the stress intensity factor tends
to the plane stress value 6,./a. In all cases k, is a monotonically increasing or decreasing
function of R except for varying G, for which &, scems to have a maximum at R = 0.75.
To give an example for the interaction of coplanar through cracks the problem of two
cracks shown in Fig. | is considcred. The stress intensity factors for the bending problem
for an isotropic plate (reproducing the results given by Joseph and Erdogan (1987) as the
special casc) are shown in Table 7. The corresponding results for the orthotropic plates are
shown in Tables 8 and 9 (sec Table 1 for material constants). For comparison Table 10
gives the stress intensity factors for through cracks in a plate under membrane loading for
which the results for isotropic and orthotropic materials are, of course, identical.t The
contents of these tables are self-explanatory and such trends as the stress intensity factors

t This result follows directly from eqn (44), sce also Krenk (1975).
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Table 8. The effect of the interaction of two coplanar through cracks on the normalized stress intensity factors in
an orthotropic plate under bending M5 = M. 0, = 6My k", a =(b,—a,) 2, ¢ = (b.—a:)2. d = u.— b (Fig. 1,
eqn (71)). matenal 2

¢ d ~
. S0l 0.25 0.5 { 2 x
[ d
1 1.051 1.023 1.001 0.9782 0.9590 0.9276
Kig) g5 0.9%14 0.9658 0.9546 0.9451 0.9373 0.9276
v, 4 0.25 0.9488 0.9411 0.9363 0.9328 0.9305 0.9276
0.1 0.9329 0.9305 0.9293 0.9285 0.9280 0.9276
1 1.591 1.274 1.122 1.029 0.9773 0.9276
Kitb) g5 {.320 1.106 1015 0.9663 0.9441 0.9276
@ 0.25 1137 1.008 0.9614 0.9405 0.9325 0.9276
0.1 1.003 0.9500 0.9353 0.9301 0.9284 0.9276
! 1.591 1.274 122 1.029 0.9773 0.9276
kita,) 0.5 1.221 0.9665 0.8424 0.7658 0.7240 0.6851
oy d 0.25 0.9261 0.7202 0.6188 0.5567 0.5236 0.4943
0.1 0.6327 0.4773 0.4023 0.3577 0.3348 0.3154
| 1.051 (.023 1.001 0.9782 0.9590 0.9276
kithy) 0.5 0.8441 0.8019 0.7687 0.7386 0.7151 0.6851
Guyd 0.25 0.6817 0.6228 0.5790 0.5436 0.5201 0.4943
0.1 0.5143 0.375 0.3880 0.3535 0.3335 0.3154

Table 9. The effect of the interaction of two coplanar through cracks on the normalized stress intensity factors in
an orthotropic plate under bending M = My 0, = 6M/h a = (b —a)i2. ¢ = (b, ~a)/ 2. d = a, b, (Fig. 1,
equ (7)), material 3

¢ d

~ 0.1 0.25 0.5 1 2 1
« «
[ [.031 1.004 0.9821 0.9582 0.9375 0.9050
kya)) 0.5 0.9595 0.9442 0.9332 0.9238 09152 0.9050
Y 0.25 0.9263 0.9188% 0.9141 0.9106 0.9083 0.9050
0.1 0.9194 0.9080 0.900% 0.9060 0.9059 0.9050
I 1.547 1.246 1.10! 101 0.9581 0.9050
kb)) 0.5 1.287 1.080 0.9917 0.9452 0.9228 0.9050
oyl 0.25 1111 0.9841 0.9385 09183 0.9103 0.9050
0.1 0.9103 0.9271 0.9127 0.9076 0.9054 0.9050
! 1.547 1.246 1101 Lol 0.9581 .9050
kyla,) 0.5 1.206 0.9550 0.8301 0.7507 0.7067 0.6752
T 0.25 0.9205 0.7171 0.6150 0.5505 0.5154 0.4912
0.1 0.6308 0.4775 0.4019 0.3555 0.3311 0.3149
! 1.031 1.004 0.9821 0.9582 0.9375 0.9050
kith;) 0.5 (.8289 0.7869 0.7529 0.7216 0.6981 0.6752
Guyd 0.25 0.6777 0.6187 0.5736 0.5364 0.5116 0.4912
0.1 0.5140 0.4375 0.3872 0.3510 0.3300 0.3149

tending to the corresponding single crack values as  — oo, and k(b)) and k& (¢,) becoming
unbounded as d — 0 are the expected results.

Some results for a single semiclliptic surtface crack in an orthotropic plate under a
bending moment M [, = M, and a membrane load N, = N, (Fig. 1) are given in Figs 5-
8. The normalizing stress intensity factors ky and k" in these and in the remaining surface
crack cxamples are the corresponding planc strain values obtained from a strip with an
edge crack of length L, subjected to bending or tension and are given in Table 3 (where
L = Ly, 0, = 6My/h°, a, = Ny/h). The profile of the crack is

L(») = Loy/(1 = (y/a)"). (73)
Figures 5 and 6 show the normalized stress intensity factors at x, = y = 0 (Fig. 1) for the

plate under bending and tension. respectively. Note that for (a/h) — 0, ky, = k7 and
k, — k.. that is the plane strain results are recovered. For a/h = | the distribution of the
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Table 10. The effect of crack interaction on the normalized stress intensity factors in an isotropic or orthotropic
plate under uniform tension N, = Nq. 6, = Nyjh.a= (b, —a))/2, c = (by~a); 2. d=a,-b, (Fig. 1)

‘ja 0.1 0.25 0.5 1

- 2 €K
d
1 1151 1112 1.0811 1.052 1.028 1.000
kitad 05 1.066 1.045 1.030 1.018 1.009 1.000
o a 0.25 1.026 1.016 1.010 1.005 1.003 1.000
0. 1.007 1.004 1.002 1.001 1.000 1.000
1 1.795 1414 1.229 L3 1.048 1.000
kb 0.5 1449 1.206 1.100 1.043 1.016 1.000
o a 0.25 1.234 1.09 1.038 1.014 1.005 1.000
0.1 1.083 1.025 1.009 1.003 1.001 1,000
i 1.795 1414 1.229 L3 1.048 1.000
kila:) 0.5 139 1.035 0.8889 0.7962 0.7446 0.7071
T il 0.25 0.9915 0.7595 0.5955 0.5683 0.5280 0.5000
0.1 0.6732 0.5006 0.4151 0.3624 0.3349 0.3162
i 1151 L2 1.0811 1.052 L.o28 1.000
kb 0.5 0.8956 0.8429 0.8007 0.7626 0.7347 0.7071
o 0.25 0.7170 0.6480 0.6425 0.5524 0.5235 0.5000
0.1 0.5422 0.4557 0.3985 0.3573 0.3336 0.3162

Material 2
Lok e Material 3 Lo/h = 0.2

oo — o et F
. —
—

o ——-
—
—

a/h
Fig. 5. The normalized stress intensity fuctor at the maximum penctration point of a semiclliptic
surfiace crack in an orthotropic plate under beading (Fig. 1, Table 1) (for k) = &, sce Table 3 for
u corresponding cruck depth L, = L),

Material 2

L_ e o e Material 3 Ly/h 0.2

1.0

k, (0)

ky

s/k

Fig. 6. The normalized stress intensity factor at the maximum penetration point of a semiclliptic
surfuce crack in an orthotropic plate under tension (Fig. 1, Tables | and 3).
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i
¢ L—‘-—Z—L‘—J
| " i
i hj{yl‘ﬂxz_—yd- -
0.6 k3 ! Y
|

ky(y)

[+ 4]
ky,

0 0.5 1.0
¥Y/a

Fig. 7. The distribution of the stress intensity factor along the front of a semielliptic surface crack
in a plate under bending (see Table 1 for material constants and Table 3 for &),

ke(y)
k¢

0.1~

0 0.5 1.0
¥/a
Fig. 8. The distribution of the stress intensity fuctor along the front of a semielliptic surface crack
in a plate under tension {see Table 1 for material propertics and Table 3 for K/,

stress intensity factors along the crack front in a plate under bending and tension is shown
in Figs 7 and 8, respectively. These results indicate that in some cases the material orthotropy
may have a significant effect on the stress intensity factors. On the other hand in a mildly
orthotropic material such as TOPAZ (materials 4 and S, sce Table 2) the results for a
through crack in a plate under bending is hardly distinguishable from the isotropic plate
results. A similar conclusions may be drawn for a surface crack from the results given in
Table 11 by comparing them with the isotropic plate solution given, ¢.g. by Joseph and
Erdogan (1987) and Erdogan (1986).

The effect of the interaction of two coplanar semiclliptic surface cracks of the same
depth L, on the stress intensity factors in an orthotropic plate under bending and tension
is shown in Tables 12-14. As expected, the interaction between surface cracks seems to be
weaker than the corresponding through cracks.
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Table 11. Stress intensity factor at the maximum penetration point of a semielliptic surface crack

in an orthotropic plate under bending M, or tension ¥, materials4and 5. a, = —a. b, =a.a; = b,
(Fig.
Lok
Material ah 0.2 04 0.6 0.8
0.5 0.710 0.303 0.049 —0.029
K, (0) 1 0.809 0.441 0.130 —0.013
— 2 0.872 0.575 0.233 0.015
ke 4 0.923 0.704 0.365 0.062
s 5 0.946 0.776 0.458 0.101
0.5 0.729 0.387 0.473 0.049
k.(0) 1 0.820 0.506 0.244 0.071
- 2 0.881 0.623 0.332 0.102
K 4 0.928 0.736 0.445 0.146
6 0.949 0.799 0.523 0.182
0.5 0.697 0.290 0.044 —0.0293
W (0) i 0.797 0.424 0.121 —0.0141
A 2 0.864 0.558 0.221 0.012
kY 4 0.918 0.691 0.351 0.057
5 6 0.943 0.766 0.444 0.095
0.5 0717 0.375 0.169 0.048
k,(0) 1 0.809 0.491 0.236 0.070
e 2 0.873 0.608 0322 0.099
: 3 0.923 0.725 0.433 0.142
6 0.945 0.790 0.512 0.176
0.25 0.585 0.184 ~0.003 ~0.0345
kn( 0.5 0.715 0.309 0.053 —0.0287
ke ! 0.811 0.446 0.136 -0.0119
: 2 0.8%2 0.586 0.242 0.0179
0.25 0.613 0.283 0.124 0.034
k(0) 0.5 0.733 0.392 0.176 0.050
PR 1 0.823 0.510 0.247 0.073
2 0.889 0.631 0.339 0.104

Table [2. Interaction of two coplanir semiclliptic surface cruacks of the same depth L, in an orthotropic plate

under bending M5 = M,, and tension N[, = N,. The stress intensity fuctors shown are at the maximum

penetration point L{y) = L, of cach cruck: a=(b,—a )2, c ={(b;~a)/2, d=a;=b, y,=(b+a)/2,
ya = (by+ax}/2 (Fig. 1), Ly/h = 0.4, material 2

< 4 01 0.25 0.5 1 2 ©

a u
1 0.444 0.437 0.430 0.423 0.417 0.409
k(y) 05 0.430 0.425 0.420 0.416 0.412 0.409
= 0.25 0.419 0.416 0414 0412 0.410 0.409
0.1 0.412 0.411 0.410 0.410 0.410 0.409
1 0.444 1.437 0.430 0.423 0.417 0.409
k(r) 05 0.298 0.287 0.277 0.268 0.262 0.255
» 0.35 0.171 0.158 0.148 0.140 0.135 0.130
0.1 0.054 0.043 0.036 0.032 0.029 0.027
t 0.505 0.500 0.494 0.488 0.483 0.477
k) 05 0.494 0.490 0.486 0.482 0.479 0.477
ke 0.35 0.485 0.482 0.480 0.479 0.478 0.477
0.1 0.479 0.478 0.477 0477 0.477 0.477
! 0.505 0.500 0.494 0.488 0.483 0.477
k(y) 05 0.380 0.370 0.362 0.355 0.350 0.345
e 0.25 0.270 0.250 0.252 0.245 0.241 0.237
0.1 0.168 0.160 0.154 0.150 0.148 0.146

Finally, it should be pointed out that in plates containing through cracks or very deep
part-through cracks subjected to bending only, the crack faces on the compressive side of
the plate would be partially closed. Therefore, the solution given in this paper would not
be valid for such problems. The solution is valid only if the plate is subjected, in addition
to bending, to a membrane loading of sufficiently high magnitude so that the stress intensity
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Table [3. Interaction of two coplanar semielliptic surfuce cracks of same depth L, in an orthotropic plate under

bending M = M, and tension V[, = N,. The stress intensity factors shown are at the maximum penetration

point Liy) = L, of euch cruck: a=th,—a )2 c=th:—ud 2 d=u,~h, v, =(b+a} 2 v.=(h-+u 2
(Fig. 1), Lk = 0.4, material 3

. 4 0 0.25 0.5 | 2 1
a

1 0.554 0,548 0.542 0.535 0.530 6.522
kird o 0.542 0.537 0.533 0.529 0.525 0,522
& 0.25 0.532 0.529 0.527 0.524 0.523 £.522
0.1 0.525 0.524 0.523 0.522 0.522 0,322
1 n.554 0.548 0.542 0.535 0.530 0,522
Kl y) 0.5 0.403 0.393 0.383 0.374 0.367 0.361
X 0.25 0.256 0.242 0.231 0.223 0.217 §.212
0.1 0.103 6.091 0.083 0.078 0.074 1072
i 0.600 0.596 0.591 0,585 0.581 0.574
Kird g5 0.591 0.587 0.583 0.580 0.577 0574
k) 0.25 0.582 0.550 0.57% 0.576 0.575 0.574
0.1 0.576 0.576 0.575 0.575 0.575 0.574
| 0.600 0.596 0.59] 0.585 0.581 0.574
k) 0.5 0.470 0.461 0.453 0.446 4.440 0.435
P 0.25 0.343 0.332 0.324 0.316 0,312 0308
0.1 0.211 0.202 0.196 0,192 0.189 0.187

Table 14, Interaction of two equal semictliptic surfuce critcks in an isotropic and an orthotropic plate under
bending My, and tension Nyt a b a2 d su,~by e ca b =1 v, < (hy+ap 2

d’a
Muterial Loth 0.1 .25 0.5 t 2 13
,\'h(}'l ),"kv:
1.2 0.832 0.829 0.826 (.82t 0816 0811
1 0.4 0.488 0481 0470 11465 0.456 0.6
0.6 01068 0.159 .153 147 0141 0138
X - 0.005 —{LO06 - {LOUB -~ (LOOY ~0.010 ~ 111
2 0815 812 1.809 .%06 (1802 .79%
5 0.4 0.444 0437 0.430 (.423 0417 0.409
- 0.6 0.121 0.115 0.110 0.105 0.101 0.097
0.8 ~0.02 ~0.0224  —0.0235  —0.0M5 00253 ~0.0260
0.2 0.873 0.871 0.86Y 0.8606 0).50:4 0861
3 0.4 .554 {1,548 .542 0.533 0.530 0.522
: 0.6 0.201 0.194 G.1%9 [ 3. 8) 0.178 Bi72
0.8 -{1.0026 —0.0043 (30062 - () KT8 —§.009 -0.0103
ki v)ik,
0.2 0.842 0.840 0.837 0.833 0.828 0.823
| 0.4 0,545 0.540 0.533 0.526 0.518 0.51t
0.6 0.270 1,266 0.261 0.256 $.252 0.247
0.5 1076 0076 0075 04074 6.073 0.073
0.2 0.826 0.823 0.820 0.817 0814 0.810
5 0.4 4.505 .500 0.493 0.488 (1,483 0.477
- 0.6 0.234 0.230 0.226 0.222 0219 0.215
0.8 0.0622 0.0611 0.0602 0.0592 0.0585 0.0578
0.2 ().880 0.878 0.876 0.874 0.872 {1.869
1 0.4 0.600 0.596 0.591 0.585 .581 .574
. 0.6 0.301 0.297 .292 (1.28% 1.253 @1.279
0.8 0.0822 0.081 0.0793 0.080 0.077 0.076

factor is positive everywhere along the crack front. The problem of a plate with a through
crack under pure bending is a crack-contact problem which was recently considered by
Joseph and Erdogan {1989).
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APPENDIX

The functions 0, and B, (L. j=1,2. 1)
I .
) =] Som; +8,4,m} — %(5_‘:3‘,«{-5”.’?“);{ N

! e . . 6 o 2
_[S_‘:A_.m;—.s._.-~S.,A,m;-5/1(S_‘_.Sn+.S.;.S“)A4m,‘}a'-—S,:A,x’ (AD)

, w1 1 . vl s [ L. P P ‘
l_l,(x)zzsm—’ 3""’+ 3»,4,—5—;‘5“.4, m,+§l~,.S“A4m, 27— 5A3--§;'»‘S“.44 m,2 —57;5“,4”",

(A2)
6 il 6 R
02y =] m + A‘—S-h.ss,A, m, {27~ A:—--BS“A‘ ",z (A3}
Ay=4
Rim = N LAQ+ o+ 130, 220, 410 Jo(2) (A4)
1
J_‘—/:, . n - * 2
Ry(n) = ;’-{‘5-7{1.;/.‘(2,+(/.(+A;)u‘Q‘—1‘Q,+z'Q,,jw(cx) (A3)
i
i»(“’-: « w . . b k3
Rz} = —h [£14:0:4+ G + 4270 —2° Q5 + 2 Q] (2) {A6)

where

() = J; g(3) e™ dy (AT)
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D(1) = (2*Qy+ 1@ MArAlAy —A) + A A4 —A) + A4 (A —dy)]

2]

a=m (i=1.2.3)

Q==QJIP|P<- Q::P|(P§P5—Pth)- QJ:P,P,,. Q‘:P:Ps- Q!w:P}Pﬁ‘P-APS

hS,:8.s h' A
= S = (S5:: 855+ 51:54)

- = .= . Pi= — ——
' T 120AS,, T 65, 120AS.,
"5SS0, h'S.. 'S, K
P = P.=—" _——
712048, = s B 121 65,
p RS, KPS P _h'S S KS,
T 105, 10A T a7 s,

A= SHS::“Sl:S:r

(A8)
(A9)

(A1)

(AlD)

(AID)



